Schumann, H., Esser, L., Loebel, J., Dietrich, A., van der Helm, D. \& Ji, X. (1991). Organometallics, 10, 2585-2592.
Schumann, H., Loebel, J., van der Helm, D. \& Hossain, M. B. (1988). Z. Naturforsch. Teil B, 43, 323-327.

Sheldrick, G. M. (1990). SHELXTL-Plus. Release 4.0. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Wilkinson, G., Gillard, R. D. \& McCleverty, J. A. (1987). Comprehensive Coordination Chemistry. New York: Pergamon.
Wilkinson, G., Stone, F. G. A. \& Abel, E. W. (1982). Comprehensive Organometallic Chemistry. Oxford: Pergamon.
Zhang, H., Oki, A. R., Wang, Y., Maguire, J. A. \& Hosmane, N. S. (1995). Acta Cryst. C51, 635-638.

Zhang, H., Wang, Y., Saxena, A. K., Oki, A. R., Maguire, J. A. \& Hosmane, N. S. (1993). Organometallics, 12, 3933-3944.

Acta Cryst. (1996). C52, 11-14

Racemic cis-Dichlorobis(2,2,6,6-tetra-methyl-3,5-heptanedionato)titanium(IV)

Christopher Glidewell, ${ }^{a}$ Graham M. Turner ${ }^{a}$ and George Ferguson ${ }^{b}$

${ }^{a}$ School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, England, and ${ }^{\text {b }}$ Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada NIG 2WI
(Received 5 July 1995: accepted I September 1995)

Abstract

The title compound, $\left[\mathrm{Ti}\left(\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2}\right)_{2} \mathrm{Cl}_{2}\right.$], has a cis configuration. The racemic compound crystallizes in space group $P 2_{1} / c$ with two molecules in the asymmetric unit: the mean $\mathrm{Ti}-\mathrm{Cl}$ distance is $2.266(5) \AA$ and the mean $\mathrm{Ti}-\mathrm{O}$ distances are (trans to O) 1.919 (7) and (trans to Cl) 1.999 (9) \AA.

Comment

Pentane-2,4-dione $\left(\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}\right.$, Hacac) reacts with both titanium(IV) chloride and titanium(IV) alkoxides to yield neutral products $\left[\mathrm{Ti}(\mathrm{acac})_{2} X_{2}\right]$, where $X=\mathrm{Cl}$ (Dilthey, 1904) or $X=\mathrm{OR}$ (Yamamoto \& Kambara, 1957). NMR studies suggest that, in solution, these products and the analogous complexes derived from other 1,3-diketones are all octahedral, containing bidentate O, O^{\prime}-chelating diketonate ligands with a cis arrangement of the two ligands X (Fay \& Lowry, 1967; Serpone \& Fay, 1967; Bradley \& Holloway, 1969). Structure analyses of the alkoxide complexes $\left[\mathrm{Ti}(\mathrm{acac})_{2}\left\{\mathrm{OC}_{6} \mathrm{H}_{3}\left(\mathrm{CHMe}_{2}\right)_{2}\right\}_{2}\right.$] (Bird, Fraser \& Lau, 1973), $\left[\mathrm{Ti}(\mathrm{PhCOCHCOCF} 3)_{2}(\mathrm{OEt})_{2}\right]$ (Wang, Miao, Fan, Feng \& Wang, 1990) and
[$\mathrm{Ti}\left(\mathrm{PhCOCHCOCH}_{3}\right)_{2}\left(\mathrm{OCMe}_{3}\right)_{2}$] (Schubert, Buhler \& Hirle, 1992) have shown unambiguously that these complexes all adopt cis configurations in the solid state. However, no X-ray structure analysis of any complex of type [$\mathrm{Ti}(1,3 \text {-diketonate })_{2} \mathrm{Cl}_{2}$] has been reported; an attempted structure analysis of $\left[\mathrm{Ti}(\mathrm{acac})_{2} \mathrm{Cl}_{2}\right]$ was thwarted by hydrolysis, and the compound actually studied was $\left[\mathrm{Ti}(\mathrm{acac})_{2} \mathrm{Cl}\right]_{2} \mathrm{O}$ (Watenpaugh \& Caughlin, 1967), where the chloride and bridging oxide ligands occupy cis sites. The title compound $\left[\mathrm{Ti}\left(\mathrm{Me}_{3} \mathrm{CCOCHCOCMe} 3_{3}\right)_{2} \mathrm{Cl}_{2}\right]$, (I), is much less susceptible to hydrolysis than $\left[\mathrm{Ti}(\mathrm{acac})_{2} \mathrm{Cl}_{2}\right]$ and is thus more amenable to X -ray structure analysis. Moreover, the structure of (I) is of considerable interest since the analogous niobium(IV) complex $\left[\mathrm{Nb}\left(\mathrm{Me}_{3} \mathrm{CCOCHCOCMe}\right)_{2} \mathrm{Cl}_{2}\right.$] was found to adopt the trans configuration (Cotton, Diebold \& Roth, 1985).

(I)

Compound (I) crystallizes in the monoclinic space group $P 2_{1} / c$, with two molecules in the asymmetric unit (Fig. 1). The Ti atoms are octahedrally coordinated forming the chromophore $\mathrm{TiCl}_{2} \mathrm{O}_{4}$ with the two Cl ligands cis, so that the molecules are chiral; the centrosymmetric space group accommodates the equal numbers of L and D enantiomers expected in a racemic product, and the asymmetric unit has been chosen to contain one complex of L and one complex of D helicity.

The bond angles around the Ti atom (Table 2) indicate significant distortion from the ideal octahedral geometry: in particular the trans $\mathrm{O}-\mathrm{Ti}-\mathrm{O}$ angles are 164.05 (13) and $163.44(12)^{\circ}$ in the two independent molecules, while the corresponding $\mathrm{Cl}-\mathrm{Ti}-\mathrm{Cl}$ angles are 96.97 (9) and $95.50(6)^{\circ}$; the intraligand $\mathrm{O}-\mathrm{Ti}-\mathrm{O}$ angles range from $82.60(12)$ to $83.03(11)^{\circ}$, associated with O \cdots O 'bites' in the range 2.588 (4) -2.597 (4) \AA. The $\mathrm{Ti}-\mathrm{Cl}$ distances all lie between the mean and lower quartile values for such bonds involving six-coordinate $\mathrm{Ti}^{\mathrm{IV}}$ (Orpen, Brammer, Allen, Kennard, Watson \& Taylor, 1989), although they are longer than the bonds in $\mathrm{TiCl}_{4}[2.170$ (2) \AA] (Morino \& Uehara, 1966). However, the $\mathrm{Ti}-\mathrm{O}$ bonds show significant differences between those trans to oxygen [mean value $1.919(7) \AA$] and those trans to chlorine [mean value $1.999(9) \AA$]; the bonds trans to oxygen are much shorter than the lower quartile value of $1.941 \AA$ (Orpen et al., 1989). A comparable difference was observed in the alkoxide complex $\left.\left[\mathrm{Ti}(\mathrm{PhCOCHCOCH})_{3}\right)_{2}\left(\mathrm{OCMe}_{3}\right)_{2}\right]$ (Schubert et al., 1992) where the $\mathrm{Ti}-\mathrm{O}$ distances involving the
diketonate ligand have a mean value of 2.001 (6) \AA when trans to another diketonate oxygen, but a mean value of 2.086 (6) \AA when trans to an alkoxide oxygen. Similarly, in the bridged oxo complex $\left[\mathrm{Ti}(\mathrm{acac})_{2} \mathrm{O}\right]_{2}$ (Smith, Caughlan \& Campbell, 1972), the diketonate $\mathrm{Ti}-\mathrm{O}$ bonds trans to another diketonate oxygen are much shorter [1.971 (4) Å] than those trans to a μ_{2}-oxo ligand. The higher p-donor capacity of the trans ligands chloride, oxide and alkoxide oxygen compared with diketonate oxygen may account for these differences (Huffman, Molay, Marsella \& Caulton, 1980).

It is of interest to compare the structure of compound (I) with that of the niobium analogue [$\mathrm{Nb}\left(\mathrm{Me}_{3} \mathrm{CCOCHCOCMe} 3\right)_{2} \mathrm{Cl}_{2}$] (Cotton et al., 1985). The niobium complex crystallizes in two forms, orthorhombic and monoclinic, but in both polymorphs the configuration is trans. In the monoclinic form the complex is centrosymmetric, with almost perfect $D_{2 h}(\mathrm{mmm})$

(a)

(b)

Fig. 1. Views (a) and (b) of the two independent molecules of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. In each molecule only one conformer is shown for the disordered tert-butyl groups.
molecular symmetry; however, the mean distances and angles in the orthorhombic polymorph are virtually identical to those of the monoclinic polymorph, so that comparison may be restricted to the monoclinic form. In the Nb complex, all $\mathrm{Nb}-\mathrm{O}$ bonds are trans to another diketonate oxygen, and are thus expected to be only a little weakened by trans influences: accordingly, although the $\mathrm{Nb}-\mathrm{O}$ bonds [1.983(4) \AA] are longer than the mean $\mathrm{Ti}-\mathrm{O}$ distance in (I), they are actually shorter than the $\mathrm{Ti}-\mathrm{O}$ bonds trans to oxygen. On the other hand, the $\mathrm{Nb}-\mathrm{Cl}$ bonds are trans to another chloride ligand, and are expected to be weakened thereby: the $\mathrm{Nb}-\mathrm{Cl}$ distance $[2.410(2) \AA$] is thus significantly longer than the $\mathrm{Ti}-\mathrm{Cl}$ bonds in (I). The trans geometry of $\left[\mathrm{Nb}\left(\mathrm{Me}_{3} \mathrm{CCOCHCOCMe} 3_{3}\right)_{2} \mathrm{Cl}_{2}\right]$, compared with the cis geometry of (I), is possibly a consequence of higher crystal-field stabilization energy (CFSE) in the trans isomer than in the cis isomer of the $4 d^{1} \mathrm{Nb}^{1 V}$ complex; application of the angular overlap model (Schäffer, 1973; Larsen \& La Mar, 1974) to the cis and trans isomers of a d^{1} octahedral complex $M X_{4} Y_{2}$ shows that the trans isomer has the higher CFSE if the ligand Y (here chloride) is the better p-donor.

Although $\mathrm{Ti}^{\mathrm{IV}}$ has the electronic configuration $3 d^{0}$, complexes of type [Ti (diketonate) ${ }_{2} X_{2}$] are generally coloured. There are no features of the structure analysis reported here which support any mechanism other than ligand-metal charge transfer as the source of this colour. Such a mechanism is consistent with the colour variations in the series $\left[\mathrm{Ti}\left(\mathrm{CF}_{3} \mathrm{COCHCOCF}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ (yellow), [$\mathrm{Ti}(\mathrm{acac})_{2} \mathrm{Cl}_{2}$] (orange) and [$\mathrm{Ti}\left(\mathrm{Me}_{3} \mathrm{CCOCHCO}-\right.$ $\left.\mathrm{CMe}_{3}\right)_{2} \mathrm{Cl}_{2}$] (orange-red), and the series [$\mathrm{Ti}(\mathrm{acac})_{2} \mathrm{~F}_{2}$] (yellow), $\left[\mathrm{Ti}(\mathrm{acac})_{2} \mathrm{Cl}_{2}\right]$ (orange) and $\left[\mathrm{Ti}(\mathrm{acac})_{2} \mathrm{Br}_{2}\right]$ (dark red) (Fay \& Lowry, 1967).

Experimental

Compound (I) was prepared by slow addition, under nitrogen, of titanium(IV) chloride to a threefold molar excess of 2,2,6,6-tetramethyl-3,5-heptanedione in sodium-dried toluene, followed by heating under reflux for 20 min . The solvent was removed under reduced pressure and orange-red crystals were grown by slow evaporation of a solution in toluene. Elemental analysis: found C $54.4, \mathrm{H} 7.8 \% ; \mathrm{C}_{22} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{Ti}$ requires C 54.4, H 7.9%. NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{H}} 1.18(s, 36 \mathrm{H}$, CH_{3}), 6.17 p.p.m. $(s, 2 \mathrm{H}, \mathrm{CH}) ; \delta_{\mathrm{C}} 27.6\left(q, \mathrm{CH}_{3}\right), 40.7$ (s, CMe_{3}), $99.0(d, \mathrm{CH}), 201.1$ p.p.m. (s, CO).

Crystal data

$\left[\mathrm{Ti}\left(\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$
$M_{r}=485.32$
Monoclinic
$P 2_{1} / c$
$a=18.028(2) \AA$
$b=18.173$ (3) \AA
$c=18.856(3) \AA$
$\beta=113.985(11)^{\circ}$
$V=5644.1(14) \AA^{3}$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 refiections
$\theta=9.55-12.35^{\circ}$
$\mu=0.513 \mathrm{~mm}^{-1}$
$T=294$ (1) K
Block cut from a larger crystal
$Z=8$
$D_{x}=1.142 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection
 Enraf-Nonius CAD-4 diffractometer

$\theta / 2 \theta$ scans
Absorption correction: three ψ scans at 4° steps (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.752, T_{\text {max }}=$ 0.858

12645 measured reflections
12271 independent reflections

Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0650$
$w R\left(F^{2}\right)=0.2157$
$S=0.884$
12271 reflections
639 parameters
H atoms riding [SHELXL93 (Sheldrick, 1993) defaults, C-H 0.93-0.96 A] $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1090 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.055$
$0.42 \times 0.38 \times 0.35 \mathrm{~mm}$
Orange-red

3897 observed reflections
$[I>2 \sigma(I)]$
$R_{\text {int }}=0.026$
$\theta_{\max }=26.9^{\circ}$
$h=-23 \rightarrow 21$
$k=0 \rightarrow 23$
$l=0 \rightarrow 24$
3 standard reflections
frequency: 120 min
intensity decay: 3.8%

C253	0.5735 (2)	(). 2863 (2)	0.38884 (12)	0.295 (13)
C254	0.5715 (2)	0.41006 (8)	0.3001 (2)	0.225 (9)
C255	0.48132 (11)	0.3179 (2)	0.3175 (2)	0.126 (5)
C256	0.6273 (2)	0.3136 (2)	0.39807 (9)	0.189 (9)
Ti2	0.22633 (4)	0.24698 (4)	0.24515 (4)	0.0674 (2)
$\mathrm{Cl21}$	0.27434 (7)	0.27371 (7)	0.15421 (7)	0.0917 (4)
$\mathrm{Cl22}$	0.28785 (8)	0.34292 (6)	0.32400 (7)	0.0990 (4)
032	0.1742 (2)	0.2173 (2)	0.3159 (2)	0.0834 (9)
034	0.1238 (2)	0.29478 (15)	0.18979 (15)	0.0736 (8)
042	0.1739 (2)	0.15695 (15)	0.1859 (2)	0.0778 (9)
044	0.3094 (2)	0.17833 (14)	0.30597 (14)	0.0716 (8)
C31	0.09094 (10)	0.19798 (10)	0.38403 (13)	0.113 (2)
C32	0.10532 (14)	0.22532 (15)	0.31443 (11)	0.0809 (13)
C33	0.0440 (3)	0.2635 (3)	0.2557 (2)	0.0881 (15)
C34	0.05444 (13)	0.29848 (12)	0.19616 (12)	0.0694 (11)
C35	-0.01137(10)	0.33733 (10)	0.12851 (12)	0.0747 (12)
C311	0.16057 (13)	0.15035 (15)	0.4342 (2)	0.255 (5)
C312	0.0839 (2)	0.26235 (14)	0.4309 (2)	0.237 (4)
C313	0.01385 (12)	0.1539 (2)	0.3570 (2)	0.168 (3)
C351	0.02368 (14)	0.40281 (12)	0.1043 (2)	0.150 (3)
C352	-0.0469 (2)	0.28552 (14)	0.06080 (13)	0.160 (3)
C353	-0.07778 (15)	0.3628 (2)	0.1515 (2)	0.224 (4)
C41	0.13116 (7)	0.03741 (8)	0.13993 (9)	0.0913 (15)
C42	0.18949 (10)	0.08943 (9)	0.19981 (10)	0.0701 (11)
C43	0.2536 (3)	0.0641 (2)	0.2630 (3)	0.0857 (14)
C44	0.31203 (9)	0.10829 (11)	0.31456 (9)	0.0705 (12)
C45	0.38532 (8)	0.08077 (7)	0.38435 (10)	0.0887 (15)
C411	0.0843 (2)	0.07823 (12)	0.06583 (10)	0.244 (11)
C412	0.17767 (12)	-0.02414 (12)	0.1236 (2)	0.126 (4)
C413	0.07264 (13)	0.0054 (2)	0.1700 (2)	0.178 (7)
C414	0.16139 (14)	0.0209 (2)	0.07821 (13)	0.226 (13)
C415	0.1245 (2)	-0.03327 (11)	0.1783 (2)	0.233 (15)
C416	0.04855 (9)	0.0722 (2)	0.1028 (2)	0.143 (8)
C451	0.4069 (2)	0.13504 (11)	0.44983 (11)	0.141 (7)
C452	0.3663 (2)	0.00782 (10)	0.4105 (2)	0.206 (11)
C453	0.45652 (10)	0.0719 (2)	0.3630 (2)	0.148 (6)
C454	0.36830 (15)	0.0846 (2)	0.45592 (10)	0.202 (10)
C455	0.4033 (2)	0.00240 (10)	0.3714 (2)	0.245 (12)
C456	0.45808 (11)	0.1275 (2)	0.3960 (2)	0.135 (6)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.								
	x	y	z	$U_{\text {eq }}$	Table 2. Selected geometric parameters ($\AA^{\circ},^{\circ}$)			
Til	0.70829 (6)	0.23618 (4)	0.21146 (7)	0.1039 (3)				
Cll1	0.69020 (12)	0.31363 (9)	0.11212 (14)	0.1778 (8)	Til-Cl11	2.258 (2)	T12-C121	2.2654 (15)
$\mathrm{Cl12}$	0.82840 (9)	0.28350 (10)	0.29605 (14)	0.1663 (8)	Til-Cl12	2.273 (2)	Ti2-Cl22	2.2671 (14)
012	0.7154 (2)	0.1577 (2)	0.2893 (2)	0.0880 (9)	Til-012	2.014 (3)	$\mathrm{Ti} 2-\mathrm{O} 32$	1.994 (3)
014	0.7540 (2)	0.1604 (2)	0.1710 (2)	0.0935 (9)	Til-014	1.916 (3)	Ti2-034	1.922 (3)
O 22	0.6010 (2)	0.1888 (2)	0.1506 (2)	0.0921 (9)	Til-O22	1.998 (3)	Ti2-O42	1.990 (3)
O24	0.6474 (2)	0.28901 (15)	0.2573 (2)	0.1020 (11)	Til-O24	1.910 (3)	Ti2-044	1.928 (3)
C11	0.72390 (7)	0.04844 (7)	0.36041 (9)	0.0861 (14)	O12-C12	1.270 (3)	O32-C32	1.239 (4)
CI2	0.73359 (11)	0.08978 (10)	0.29458 (9)	0.0664 (11)	O14-C14	1.283 (3)	O34-C34	1.305 (3)
CI3	0.7585 (3)	0.0564 (2)	0.2428 (2)	0.0789 (13)	O22-C22	1.262 (4)	O42-C42	1.262 (3)
C14	0.77063 (12)	0.09180 (13)	0.18443 (12)	0.0694 (11)	O24-C24	1.301 (3)	O44-C44	1.282 (3)
C15	0.79779 (9)	0.05426 (9)	0.12699 (11)	0.0765 (12)	C11-C12	1.521 (2)	C31	1.521 (2)
C111 \dagger	0.7073 (2)	0.10177 (12)	0.41309 (12)	0.152 (4)	C12-C13	1.370 (5)	C32-C33	1.392 (5)
C112	0.65428 (11)	-0.00469 (12)	0.3279 (2)	0.178 (6)	C13-C14	1.367 (5)	$\mathrm{C} 33-\mathrm{C} 34$ $\mathrm{C} 34-\mathrm{C}$	1.368 (5)
C113	0.80023 (11)	0.00649 (14)	0.40642 (15)	0.204 (7)	C14-C15	1.520 (2)	C34-C35	1.518 (2)
C114	0.64121 (10)	0.0629 (2)	0.3589 (2)	0.126 (7)	C21-C22	1.520	C41-C42	1.520 (2)
C115	0.7335 (3)	-0.03275 (8)	0.3518 (2)	0.110 (6)	C22-C23	$1.406(5)$ $1.344(5)$	C42-C43	1.359 (4)
C116	0.7873 (2)	0.0736 (2)	0.43699 (9)	0.204 (14)	C24-C25	1.344 (5) 1.521 (2)	C44-C45	
C151	0.83694 (15)	0.10937 (13)	0.0937 (2)	0.131 (2)	C24-C25	1.521 (2)	C44-C45	1.521 (2)
C152	0.85788 (14)	-0.00552 (12)	0.1670 (2)	0.111 (2)	Cll1-Til-Cl12	96.97 (9)	$\mathrm{Cl} 21-\mathrm{Ti} 2-\mathrm{Cl} 22$	95.50 (6)
C153	0.72570 (13)	0.0209 (2)	0.06215 (13)	0.116 (2)	Cl11-Til-O12	172.46 (11)	C12i-Ti2-O32	173.60 (10)
C21	0.46672 (11)	0.14217 (11)	0.10032 (12)	0.101 (2)	$\mathrm{Clll}-\mathrm{Til}-\mathrm{O} 14$	93.32 (11)	$\mathrm{Cl} 21-\mathrm{Ti} 2-\mathrm{O} 34$	94.07 (9)
C22	0.53453 (13)	0.18867 (12)	0.15805 (13)	0.0788 (13)	$\mathrm{Cl11-Til-O22}$	90.74 (11)	$\mathrm{Cl21-Ti2-O42}$	89.50 (10)
C23	0.5215 (3)	0.2329 (2)	0.2131 (3)	0.0861 (14)	$\mathrm{Cl} 11-\mathrm{Til}-\mathrm{O} 24$	98.43 (12)	$\mathrm{Cl} 21-\mathrm{Ti} 2-\mathrm{O} 44$	98.39 (10)
C24	0.57619 (11)	0.28158 (9)	0.25874 (10)	0.0817 (13)	$\mathrm{Cl} 12-\mathrm{Til}-\mathrm{Ol2}$	89.80 (11)	$\mathrm{Cl} 22-\mathrm{Ti} 2-\mathrm{O} 32$	90.42 (10)
C25	0.56403 (7)	0.33067 (8)	0.31845 (9)	0.105 (2)	$\mathrm{Cl12-Til-O14}$	96.32 (11)	C122-Ti2-O34	96.59 (9)
C211	0.50200 (14)	0.08048 (15)	0.0710 (2)	0.235 (5)	$\mathrm{Cl12-Til-O22}$	171.72 (12)	Cl22-Ti2-042	174.05 (9)
C212	0.4155 (2)	0.1104 (2)	0.1389 (2)	0.164 (3)	$\mathrm{Cl12-Til-O24}$	92.94 (11)	$\mathrm{Cl} 22-\mathrm{Ti} 2-\mathrm{O} 44$	93.04 (9)
C213	0.4140 (2)	0.1890 (2)	0.0330 (2)	0.258 (6)	$\mathrm{Ol2-Til-O14}$	82.60 (12)	$\mathrm{O} 32-\mathrm{Ti} 2-\mathrm{O} 34$	82.82 (11)
C251	0.62576 (11)	0.39151 (11)	0.3422 (2)	0.144 (6)	$\mathrm{O} 12-\mathrm{Til}-\mathrm{O} 22$	82.69 (13)	$\mathrm{O} 32-\mathrm{Ti} 2-\mathrm{O} 42$	84.72 (12)
C252	0.48042 (9)	0.3637 (2)	0.2844 (2)	0.287 (14)	$\mathrm{Ol2-Til-O24}$	84.48 (13)	$\mathrm{O} 32-\mathrm{Ti} 2-\mathrm{O} 44$	83.68 (12)

\dagger Occupancies for the disordered tert-butyl C atoms are: C111-C113/ C114-C116 0.655 (8)/0.345 (8); C251-C253/C254-C256 0.478 (9)/ 0.522 (9); C411-C413/C414-C416 0.586 (10)/0.414 (10); C451-C453/ C454-C456 0.471 (10)/0.529 (10).

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{O} 14-\mathrm{Til}-\mathrm{O} 22$	$86.21(13)$	$\mathrm{O} 34-\mathrm{Ti} 2-\mathrm{O} 42$	$86.23(11)$
$\mathrm{O} 14-\mathrm{Til}-\mathrm{O} 24$	$164.05(13)$	$\mathrm{O} 34-\mathrm{Ti} 2-\mathrm{O} 44$	$163.44(12)$
$\mathrm{O} 22-\mathrm{Til}-\mathrm{O} 24$	$82.90(13)$	$\mathrm{O} 42-\mathrm{Ti} 2-\mathrm{O} 44$	$83.03(11)$

The compound crystallized in the monoclinic system; space group $P 2_{1} / c$ was determined from the systematic absences. The crystal did not diffract well (only 32% of the data were classified as 'observed' at the 2σ level) presumably because the molecules take part in no significant intermolecular interactions.

Four of the eight independent tert-butyl groups showed clear evidence of rotational disorder and this was allowed for using the DFIX options in SHELXL93 (Sheldrick, 1993) with suitable distance and occupancy constraints. For all tertbutyl groups, free variables were refined for the $\mathrm{C}-\mathrm{C}$ (methyl) [$1.502(1) \AA$], methyl \cdots methyl $\left[2.447(1) \AA\right.$] and $\mathrm{C}\left(s p^{2}\right) \cdots$ C (methyl) $[2.474$ (1) \AA] distances to ensure approximate tetrahedral geometry.
Examination of the structure with PLATON (Spek, 1994a) showed that there were no solvent accessible voids in the crystal lattice.
Data collection: Enraf-Nonius (1992) CAD-4 PC Software. Cell refinement: Enraf-Nonius (1992) SET4 and CELDIM. Data reduction: DATRD2 in NRCVAX94 (Gabe, Le Page, Charland, Lee \& White, 1989). Program(s) used to solve structure: NRCVAX94 (Patterson heavy-atom method). Program(s) used to refine structure: NRCVAX94 and SHELXL93. Molecular graphics: NRCVAX94, PLUTON (Spek, 1994b) and ORTEPII (Johnson, 1976) as implemented in PLATON. Software used to prepare material for publication: NRCVAX94 and SHELXL93.

GF thanks NSERC (Canada) for research grants; CG and GMT thank ICI PLC for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1297). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Bird, P. H., Fraser, A. R. \& Lau, C. F. (1973). Inorg. Chem. 12, 1322-1328.
Bradley, D. C. \& Holloway, C. E. (1969). J. Chem. Soc. A, pp. 282285.

Cotton, F. A., Diebold, M. P. \& Roth, W. J. (1985). Polyhedron, 4, 1485-1491.
Dilthey, W. (1904). Chem. Ber. 37, 588-592.
Enraf-Nonius (1992). CAD-4 PC Software. Version 1.1. EnrafNonius, Delft, The Netherlands.
Fay, R. C. \& Lowry, R. N. (1967). Inorg. Chem. 6, 1512-1517.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Huffman, J. C., Molay, K. G., Marsella, J. A. \& Caulton, K. G. (1980). J. Am. Chem. Soc. 102, 3009-3014.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, USA.
Larsen, E. \& La Mar, G. N. (1974). J. Chem. Educ. 51, 633-640.
Morino, Y. \& Uehara, H. (1966). J. Chem. Phys. 45, 4543-4550.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S83.
Schäffer, C. E. (1973). Struct. Bonding (Berlin), 14, 69-110.

Schubert, U., Buhler, H. \& Hirle, B. (1992). Chem. Ber. 125, 9991003.

Serpone, N. \& Fay, R. C. (1967). Inorg. Chem. 6, 1835-1843.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Smith. G. D.. Caughlan, C. N. \& Campbell. J. A. (1972). Inorg. Chem. 11. 2989-2993.

Spek. A. L. (1994a). PLATON. Molecular Geometry Program. July 1994 version. University of Utrecht, The Netherlands.
Spek, A. L. (1994b). PLUTON. Molecular Graphics Program. July 1994 version. University of Utrecht, The Netherlands.
Wang, J., Miao, F., Fan, X., Feng, X. \& Wang, J. (1990). Acta Cryst. C46, 1633-1635.
Watenpaugh, K. \& Caughlin, C. N. (1967). Inorg. Chem. 6, 963-967.
Yamamoto. A. \& Kambara. S. (1957). J. Am. Chem. Soc. 79, 43444348.

Acta Cryst. (1996). C52, 14-16

Tetramethylammonium Lithium Zinc Cyanide, $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{LiZn}(\mathrm{CN})_{4}$

Xianhui Bu, Thurman E. Gier and Galen D. Stucky
Department of Chemistry, University of California, Santa Barbara, CA 93106, USA

(Received 6 April 1995; accepted 6 July 1995)

Abstract

The title crystal has a diamond-type framework structure with Zn^{2+} and Li^{+}ions on tetrahedral atom sites and $(\mathrm{CN})^{-}$anions as bridging 'rods' between them. The charge-balancing $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cations are located in half of the adamantane cages.

Comment

This work is part of our efforts to synthesize diamondtype structures with variable adamantane cage sizes. The X-ray powder diffraction study of the $\left[\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}\right]^{+}$ templated sample shows that it has the same cubic diamond-type structure as $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{LiZn}(\mathrm{CN})_{4}$ with a sightly expanded cage (3% volume increase per cell). The cubic structure (possibly the diamond-type framework) is lost when other organic templates, such as $\left[\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4}\right]^{+}$, are used.
In diamond-type frameworks, the number of the adamantane cages is the same as the number of tetrahedral atom sites. Thus, in the title compound, only half of the adamantane cages are occupied. The crystal structure of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{CuZn}(\mathrm{CN})_{4}$ has been reported previously (Hoskins \& Robson, 1991). By replacing Cu^{+}with Li^{+}, we were able to distinguish two different tetrahedral atom sites and prove that $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}^{+}$cations are located

